翻訳と辞書 |
Bochner space : ウィキペディア英語版 | Bochner space In mathematics, Bochner spaces are a generalization of the concept of ''Lp'' spaces to functions whose values lie in a Banach space which is not necessarily the space R or C of real or complex numbers. The space ''Lp(X)'' consists of (equivalence classes of) all Bochner measurable functions ''f'' with values in the Banach space ''X'' whose norm ''||f||X'' lies in the standard ''Lp'' space. Thus, if ''X'' is the set of complex numbers, it is the standard Lebesgue ''Lp'' space. Almost all standard results on ''Lp'' spaces do hold on Bochner spaces too; in particular, the Bochner spaces ''Lp(X)'' are Banach spaces for . ==Background== Bochner spaces are named for the Polish-American mathematician Salomon Bochner.
抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)』 ■ウィキペディアで「Bochner space」の詳細全文を読む
スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース |
Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.
|
|